Production of Bioethanol from Agricultural Wastes Using Residual Thermal Energy of a Cogeneration Plant in the Distillation Phase

نویسندگان

  • Raffaela Cutzu
  • Laura Bardi
چکیده

Alcoholic fermentations were performed adapting the technology to exploit the residual thermal energy (hot water at 83-85°C) of a cogeneration plant and to valorize agricultural wastes. Substrates were apple, kiwifruit and peaches wastes and Corn Threshing Residue (CTR). Saccharomyces bayanus was chosen as biocatalyst. The fruits, fresh or blanched, were mashed; CTR was gelatinized and liquefied by adding Liquozyme® SC DS (Novozyme); saccharification simultaneous to fermentation was carried out using the enzyme Spirizyme® Ultra (Novozyme). Lab-scale static fermentations were carried out at 28°C and 35°C, using raw fruits, blanched fruits and CTR, monitoring the ethanol production. The highest ethanol production was reached with CTR (10,22%9 and among fruits with apple (8,71%). Distillations at low temperatures and under vacuum, to exploit warm water from cogeneration plant, were tested; distillation at 80°C and 200 mbar or 400 mbar allowed to recover 93,35 and 89,59 % of ethanol respectively. These results support a fermentation process coupled to a cogeneration plant, fed with apple wastes and with CTR when apple wastes are not available, where hot water from cogeneration plant is used in blanching and distillation phases. The scale up in a pilot plant was also carried out.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تحلیل ترمواکونومیک تولید هم‏زمان آب و توان از طریق نمک‏ زدایی حرارتی در کنار چرخه ترکیبی پس ‏فشاری

In this paper a comprehensive model is proposed to simulate combined cycle water and power process (CCWP) based on thermal desalination. In order to verify the performance of model, Al-Taweelah cogeneration plant in UAE is thermodynamically simulated by Thermoflex V.19 and the results are compared with actual operating conditions. Considering shortcomings of mentioned unit, a cogeneration combi...

متن کامل

Energy and Exergy Analysis of a New Power, Heating, Oxygen and Hydrogen Cogeneration Cycle Based on the Sabalan Geothermal Wells

In this paper, a new power, heating and hydrogen cogeneration cycle from Sabalan geothermal two wells is proposed and analyzed. In the proposed system, a new double flash cycle and organic Rankine cycle are used for power production. A proton exchange membrane (PEM) is also used for hydrogen production and the domestic water heater is used for heating. The impacts of some design parameters, suc...

متن کامل

Biohydrogen Production of Vinasse Derived from Bioethanol Processing Industry Wastewater: A Review

Background: Increasing global consumption of fossil fuels leads to greenhouse gas emissions, climate change and environmental pollution. Agricultural, animal and food industrial waste is one of the main sources of pollution. The bioethanol industry is one of 17 highly polluted industries. In the process of producing bioethanol, vinasse is produced, and so far 22.4 Giga litter of vinasse has bee...

متن کامل

Exergetic, Exergoeconomic and Exergoenvironmental Multi-Objective Genetic Algorithm Optimization of Qeshm Power and Water Cogeneration Plant

In this study, optimization of Qeshm power and water desalting cogeneration plant has been investigated. The objective functions are related to maximizing exergetic efficiency and minimization of exergoeconomic and exergoenvironmental parameters. Also, the integration of RO desalination with the existing plant has been evaluated based on these analyses. This plant includes two MAPNA 25 MW gas t...

متن کامل

Techno-economics of integrating bioethanol production from spent sulfite liquor for reduction of greenhouse gas emissions from sulfite pulping mills

BACKGROUND Flow sheet options for integrating ethanol production from spent sulfite liquor (SSL) into the acid-based sulfite pulping process at the Sappi Saiccor mill (Umkomaas, South Africa) were investigated, including options for generation of thermal and electrical energy from onsite bio-wastes, such as bark. Processes were simulated with Aspen Plus® for mass- and energy-balances, followed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017